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Abstract. In this paper a combined arbitrary Lagrange-Euler fictitious domain (ALE-FD) method for fluid-
structure interaction problems in cardiovascular biomechanics is derived in terms of a weighted residual finite-
element formulation. For both fluid flow of blood and solid mechanics of vascular tissue, the performance of
tetrahedral and hexahedral Crouzeix-Raviart elements are evaluated. Comparable convergence results are found,
although for the test cases considered the hexahedral elements are more accurate. The possibilities that are offered
by the ALE-FD method are illustrated by means of a simulation of valve dynamics in a simplified left ventricular
flow model.
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1. Introduction

In cardiovascular biomechanics one of the major topics today is the simulation and analysis
of the hemodynamics of the cardiovascular system using computational methods [1]. Because
of its flexible nature and the prospect of modeling fluid-structure interaction (FSI) between
blood flow and vessel wall deformation, these computational methods are often based on the
finite-element method (FEM). When looking at the future, patient-specific models are going
to be used to improve on-line model-based diagnostics and evaluate alternatives in surgical
planning of cardiovascular disease. These applications demand fast computations using de-
tailed geometries obtained from X-ray angiography, computed tomography (CT), ultrasound
(US) and magnetic resonance imaging (MRI).

As the dimensions of arteries change with the varying internal blood pressure, both fluid
flow and solid deformation are involved. In order to incorporate this fluid-structure interaction
in a mathematical model, a classical Galerkin finite-element method can be used to approx-
imate the solution of the Navier-Stokes equations for fluid flow and the balance equations for
solid deformation. Within this finite-element framework, the rheological behavior of blood
[2, 3] and the nonlinear constitutive behavior of biological tissue [4] can be incorporated in
a mathematically founded way. Besides the complex constitutive behavior, in cardiovascular
biomechanics the geometry of the domains can be very complex. Nowadays two basic element
shapes are most commonly used for three-dimensional analysis of fluid flow and solid mech-
anics, namely hexahedral and tetrahedral elements. Both shapes have their own advantages
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and disadvantages [5, 6]. Apart from accuracy and stability considerations, the main advantage
of tetrahedra is that powerful mesh-generators are available to triangulate complex domains.

An arbitrary Lagrange-Euler (ALE) method originating from the modeling of metal-
forming processes [7, 8] can be used to accommodate for the deformation of the fluid domain
surrounded by a moving/deforming solid [9] and have been used for fluid-structure interaction
problems in vascular systems in the past [10–12]. A more complicated interaction model
is needed to describe the movement of solid structures that are immersed in the fluid. This
coupling can be realized by a set of dynamic and kinematic constraints that are enforced
through Lagrange multipliers [13–15]. Successful application of this so-called fictitious do-
main method that actually originates from Peskin’s immersed boundary technique [16] and is
combined with an ALE method can be found in [17–19].

The objective of this paper is to illustrate the potential of a combined arbitrary Lagrange-
Euler fictitious-domain (ALE-FD) method for cardiovascular fluid-structure interaction and to
indicate how this method can make use of the latest developments in finite-element modeling
of blood flow and biological tissue mechanics. Hereto, in Section 2 an alternative derivation of
the fictitious domain method, not based on Lagrange multipliers but in the context of a weak
formulation of the governing equations will be given. Next in Section 3 some remarks on ad-
missible finite element spaces are made. Numerical tests in Section 4 will provide information
on the applicability of hexahedral and tetrahedral elements. Some examples of fluid-structure
interaction problems that arise in cardiovascular biomechanics will be given in Section 5.
Finally a summary of conclusions will be discussed in Section 6.

2. Governing equations

2.1. FLUID MOTION

2.1.1. Conservation of mass and momentum
Introducing v as the fluid velocity, we can write the momentum equation for a fluid with
density ρ in domain � ⊂ R

3 with boundary � as

ρ
∂v

∂t
+ ρ(v · ∇v) = ∇ · σ + f in �, (1)

where t denotes the time, σ the Cauchy stress tensor and f the body forces per unit of volume.
If incompressibility of the fluid is assumed, conservation of mass reduces to the continuity
equation

∇ · v = 0 in �. (2)

The Cauchy stress tensor σ is written in terms of the hydrostatic pressure p and the extra
stress tensor τ , i.e.:

σ = −pI + τ . (3)

The pressure in (3) can be seen as a Lagrange multiplier to enforce the incompressibility
constraint (2) and, together with appropriate boundary and initial conditions and a constitutive
equation that expresses the material properties of the fluid, a unique solution of the set of
differential equations (1) and (2) in terms of the unknown pressure p and velocity v can be
found [20, Chapter 2].
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2.1.2. Boundary and initial conditions
For each part �k of the boundary � = ⋃

k

�k with ∀k �=l �k ∩ �l = ∅, outer normal n and

tangential directions t1 and t2, the boundary conditions are as follows:

v · n = vn ∨ (σ · n) · n = sn

in �k

v · ti = vti ∨ (σ · n) · ti = sti , i = 1, 2
(4)

where, in the case of Dirichlet conditions, vn and vti denote the prescribed normal and tan-
gential components of the velocity vector v and, in the case of Neumann conditions, sn and
sti denote the prescribed normal and tangential components of the stress vector s = σ · n.
Note that boundary conditions are given in terms of components of the velocity and stress
vector. As a consequence, only for fully developed outflow velocity boundary a prescribed
normal component of the stress vector, together with zero tangential velocity corresponds
with a prescribed pressure. Initial conditions must be given for the velocity, i.e., v|t=0 = v0

and, depending on the time integration that will be used, for the pressure p|t=0 = p0.

2.1.3. Constitutive equations
If an inelastic generalized Newtonian flow behavior is assumed, the Cauchy stress tensor σ

can be written as

σ = −pI + 2η(γ̇ )Dv, (5)

where η(γ̇ ) is the shear-rate-dependent dynamic viscosity and Dv denotes the rate of deform-
ation tensor

Dv = 1

2
[∇v + (∇v)T ] . (6)

The shear-rate parameter γ̇ must be defined in terms of the second invariant of the rate of
deformation tensor Dv . For incompressible fluids this is

γ̇ =
√

2Dv : Dv. (7)

In [2, 3] it is shown that the non-Newtonian behavior of blood can be described very well with
the Carreau-Yasuda model:

η(γ̇ ) − η∞
η0 − η∞

= [1 + (λγ̇ )a] n−1
a (8)

with η0, η∞, λ, a and n being parameters of the model. For a time constant λ = 0 this model
reduces to a simple Newtonian model with η(γ̇ ) = η0.

2.1.4. Weak form
If we define W = {w ∈ [H 1

0 (�)]3} with H 1
0 (�), the Hilbert space satisfying the homogeneous

version of the Dirichlet boundary conditions given in (4) and Q = {q ∈ L2(�); ∫
�

qd� = 0},
the weak formulation of (1) and (2) after partial integration and substitution of the Neumann
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boundary conditions is:∫
�

w · ρ
(

∂v

∂t
+ v · ∇v

)
d� +

∫
�

(∇w)T : τ d� −
∫
�

p∇ · w d� =

=
∫
�

w · f d� +
∫
�

w · s d� ∀w ∈ W ,

∫
�

q∇ · v d� = 0 ∀q ∈ Q,

(9)

with in our case τ = 2η(γ̇ )D, although any other inelastic constitutive model can be used.

2.1.5. Time integration
If an implicit, backward-Euler, time integration is applied, one can write

∂v

∂t
≈ v − vn

�t
, (10)

where v = vn+1 is the unknown velocity at tn+1 and vn is the known velocity at tn with
�t = tn+1 − tn. The vector v0 must be defined by the initial condition for the velocity.

2.1.6. Linearization
Linearization of the nonlinear convective term v·∇v can be carried out with a Newton iteration
process. Let v be the converged solution and v̂ an estimate of this solution. Then the variation
δv can be defined as δv = v − v̂. Elaboration on the convective term yields(

v̂ + δv
) · ∇ (v̂ + δv

) = v̂ · ∇v̂ + v̂ · ∇δv + δv · ∇v̂, (11)

where higher-order terms in δv are neglected. As the extra stress τ also depends on v, it must
also be expressed in terms of its estimate τ̂ and variation δτ . The following linearized set of
equations is obtained:∫

�

w · ρ
(

δv

�t
+ v̂ · ∇δv + δv · ∇v̂

)
d� +

∫
�

(∇w)T : δτ d�+

−
∫
�

δp∇ · w d� =
∫
�

w · f d� +
∫
�

w · s d� + r̂ ∀w ∈ W ,

∫
�

q∇ · δv d� = −
∫
�

q∇ · v̂ d� ∀q ∈ Q,

(12)

with p = p̂ + δp. The residual r̂, which only consists of known quantities, is defined by:

r̂ =
∫
�

[
w · ρ

(
vn − v̂

�t
− v̂ · ∇v̂

)
− (∇w)T : τ̂ + p̂∇ · w

]
d�. (13)

If we define Da = 1
2 [∇a + (∇a)T ], the extra stress τ can be linearized according to:

τ = 2η(γ̇ )D = 2[η( ˆ̇γ ) + η(δγ̇ )](Dv̂ + Dδv) ≈ 2η( ˆ̇γ )Dv̂ + 2η( ˆ̇γ )Dδv = τ̂ + δτ . (14)
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Note that in (14) the viscosity η(γ̇ ) has been approximated by η( ˆ̇γ ) based on the velocity of
the previous iteration. As the viscosity only weakly depends on the shear rate, this successive
substitution will result in a stable solution procedure in almost all practical cases. The weak
formulation (12) will be taken as a point of departure for the finite-element method described
in the Section 3.

2.2. SOLID DEFORMATION

2.2.1. Conservation of mass and momentum
The equation of motion and the continuity equation for an incompressible solid material
defined in the domain �(t) ⊂ R

3 and bounded by �(t) can be written as:

∇ · σ = f in �(t),

det(F) − 1 = 0 in �(t),

(15)

with σ the Cauchy stress tensor, f a body force per unit volume and F = (∇0x)T the
deformation-gradient tensor defining the deformation between reference state �0 and the
current configuration �(t). The Cauchy stress for an incompressible material again is written
as

σ = −pI + τ , (16)

where p is the hydrostatic pressure and τ the extra stress resulting from deformation.

2.2.2. Boundary conditions
The set of equations is completed with a set of suitable boundary conditions at �(t). The same
as in the case of fluid flow, for each part �k of the boundary � = ⋃

k

�k with ∀k �=l �k ∩�l = ∅,

outer normal n and tangential directions t1 and t2, the boundary conditions can be of the form

x · n = xn ∨ (σ · n) · n = sn

on �k,

x · ti = xti ∨ (σ · n) · ti = sti , i = 1, 2
(17)

where, in the case of Dirichlet conditions, xn and xti denote the prescribed normal and tan-
gential components of the position vector x and, in the case of Neumann conditions, sn and
sti denote the prescribed normal and tangential components of the surface-traction vector
s = σ · n.

2.2.3. Constitutive equations
In order to describe the mechanical properties of cardiovascular tissue, various linear and non-
linear constitutive equations for both isotropic and anisotropic material behavior, including or
excluding residual strain, have been proposed. A review can be found in [21]. In this study we
will consider a linear elastic neo-Hookean model and a fiber-reinforced arterial-wall model.
For the neo-Hookean model, the extra stress is linear related to the Finger tensor. So:

σ = −pI + G(B − I), (18)

with G the shear modulus and the Finger tensor B defined as:

B = F · FT . (19)
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We will assume the shear modulus G to be constant although a scalar function of the invariants
of B is also possible. For the arterial wall one can use a fiber-reinforced transversely isotropic
material defined by an extra stress that is the sum of two contributions, a linear stress of the
matrix τm and a nonlinear fiber stress τf [4, 22]:

σ = −pI + τm + τf ee (20)

with

τm = Gm(B − I) and τf = k1λ
2
f (λf − 1)ek2(λ2

f −1)2
. (21)

Here Gm, k1 and k2 are the material parameters. The fiber stretch λf is defined by the deform-
ation:

λf = e · C · e0 with C = FT · F, (22)

where e and e0 denote the unit vectors of the fiber direction in the current and initial configur-
ation, respectively.

2.2.4. Weak form
Let w ∈ W and q ∈ Q be weighting functions for, respectively, the momentum equation
and incompressibility constraint with W and Q defined as in Section 2.1.4; then after partial
integration and substitution of the Neumann boundary conditions, the weak form of (15) is
given by1∫

�(t)

(∇w)T : σ d� =
∫

�(t)

w · f d� +
∫

�(t)

w · s d�, ∀w ∈ W ,

∫
�(t)

q(J − 1) d� = 0, ∀q ∈ Q

(23)

Here J = det(F) is the Jacobian of the deformation. Note that the integrals are defined with
respect to the current (unknown) configuration �(t) with boundary �(t).

In order to evaluate the integrals, a transformation to a known (reference) configuration,
denoted by �r , is required. There are two options available: (i) a transformation back to the
undeformed configuration (total Lagrange approach, �r = �0) or (ii) a transformation to
the last known configuration (updated Lagrange approach, �r = �n); see Figure 1 for a
schematic representation. In this work the updated Lagrange approach is used for describing
the deformation of the continuum.

Let Fn denote the deformation tensor which describes the deformation from the initial
configuration to the configuration �n at t = tn and F� the deformation from configuration �n

to the current configuration; then the tensor describing the deformation from �0 to the current
configuration �(t) is given by

F = F� · Fn (24)

with

Fn = (∇0xn)
T and F� = (∇nx)T , (25)

1We will omit the additions ∀w ∈ W and ∀q ∈ Q in the sequel of this paper.
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Figure 1. Schematic representation describing the deformation within an updated Lagrange approach.

where ∇0 denotes the gradient operator with respect to the initial configuration and ∇n denotes
the gradient with respect to the known configuration �n. Writing the gradient operator with
respect to the current configuration2 as ∇ = F−T

� · ∇n yields the following weak form for the
balance equations:∫

�n

(∇nw)T : F−1
� · σ J� d�n =

∫
�n

w · f J� d�n +
∫
�n

w · s J̃� d�n,

∫
�n

q(J − 1) J� d�n = 0,

(26)

with d� = J� d�n and d� = J̃� d�n.

2.2.5. Linearization
The nonlinear set of Equations (26) can be solved using a Newton iteration process. In the
updated Lagrange formulation we take the last known configuration (�n) to be the reference
configuration (see 2.2.1 and Figure 1). If the converged solution (on �) is denoted by x, and
x̂ is an estimate of this solution (on �̂), then the variation δx in the estimate is given by
δx = x − x̂.

All quantities appearing in (26) can be expanded similarly, giving

F� = F� + δF�, σ = σ̂ + δσ = σ̂ − δpI + δτ , J = Ĵ + δJ. (27)

Note that, due to our choice, δF� does not represent the deformation for �̂ to �. After
substitution of the expressions above in the balance equations and neglecting second-order

2This follows from ∇x = I = F−T
� · FT

� = F−T
� · ∇nx.
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terms the linearized balance equations with respect to the reference configuration read∫
�n

(∇nw)T : (δ(F−1
� ) · σ̂ + F−1

� · (−δpI + δτ + σ̂
))

J� d�n =

∫
�̂

w · f d�̂ +
∫
�̂

w · sd�̂,

∫
�n

q(Ĵ + δJ − 1) J� d�n = 0.

(28)

Note that the right-hand side of (26) and (J�) have been excluded from the linearization and
are evaluated at the last known configuration in the iteration procedure. This does not break
the theory but may influence the convergence rate. The body and surface forces are evaluated
at the most recent configuration �̂ with boundary �̂. Note that now all unknown quantities are
with respect to the estimate x̂. If δx is sufficiently small, then δ(F−1

� ) and δJ can be written
as3:

δ(F−1
� ) = −F−1

� · (∇δx)T , δJ = Ĵ (∇ · δx) . (29)

The linearized constitutive equations for the extra stress can be expressed in δx using δτ =
4M : (∇δx)T , where 4M is determined by the constitutive equation. It is convenient to rewrite
the equations with respect to the most recent estimated configuration �̂ corresponding to
position field x̂ by making use of (29). For the linearized balance equations with respect to
the last known (estimated) configuration this gives∫

�̂

(∇w)T : [δτ − (∇δx)T · σ̂
]

d�̂ −
∫
�̂

δp∇ · w d�̂ =
∫
�̂

w · f d�̂ +
∫
�̂

w · sd�̂ + r̂,

∫
�̂

q∇ · δx d�̂ = −
∫
�̂

q
( Ĵ − 1

Ĵ

)
d�̂.

(30)

Here the residual r̂ is defined by

r̂ =
∫
�̂

[−(∇w)T : τ̂ + p̂(∇ · w)
]

d�̂. (31)

3We use:
F−1

� = (F� + δF�)−1 = [F� · (I + F−1
� · δF�)]−1 = (I + F−1

� · δF�)−1 · F−1
� ≈ (I − F−1

� · δF�) · F−1
� =

F−1
� − F−1

� · δF� · F−1
� = F−1

� − F−1
� · (F−T

� · δFT
�)T = F−1

� − F−1
� · (F−T

� · ∇nδx)T = F−1
� − F−1

� · (∇δx)T

and
J = det(F) = det(F + δF) = det((I + δF · F−1) · F) = det(I + δF · F−1)det(F) ≈ Ĵ (1 + tr(δF · F−1)) =
Ĵ + Ĵ tr(F−T · δFT )T = Ĵ + Ĵ tr(F−T · ∇0δx)T = Ĵ + Ĵ tr(∇δx)T = Ĵ + Ĵ (∇ · δx).
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Figure 2. Schematic representation of a fluid domain �f with boundary �f partially connected to a solid domain
�s with boundary �s .

Note that all quantities marked with a ˆ are known and that the gradient operator ∇ is taken
with respect to the last known (estimated) configuration �̂. The natural boundary conditions
are not included in the linearization process and are evaluated on �̂ and �̂. The governing
equations of (30) hold irrespective of the choice for the constitutive equation. To evaluate δτ

we need an expansion of the extra stress tensor τ with respect to τ̂ resulting from a variation
in F. For the neo-Hookean model (18) we find4:

δτ = G
[
(∇δx)T · B + B · (∇δx)

]
(32)

In general the variation δτ is expressed in terms of the unknown parameter δx using δτ = M :
(∇δx)T where M is solely determined by the constitutive equation. For the fiber-reinforced
material the linearization is identical for the isotropic matrix contribution. The variation in the
stress can be derived as [22, p. 19]

δτ = δτm + τ̂f (K + KT ) + 2


λ̂2

f

∂τf

∂λ2
f


λf =λ̂f

− τ̂f


K êê, (33)

with

K = (∇δx)T · êê and K = ê · (∇δx)T · ê, (34)

which are both linear tensor functions of (∇δx)T .

2.3. ARBITRARY LAGRANGE-EULER METHODS (ALE)

2.3.1. Coupling of reference systems
We consider a fluid domain �f bounded by �f that is (partly) connected to a solid domain
�s with boundary �s (see Figure 2). The interface boundary between �f and �s is denoted
as �fs = �f ∩ �s . The deformation of the solid domain is either determined by the equations
of motion given in the previous section, i.e., (30) and (32), or prescribed. The deformation
of the solid domain is formulated with respect to a changing configuration (�̂ in (30) of the
previous section). The description of the fluid motion (9), however, is defined with respect to

4δτ = GδB = G[δF · FT + F · δFT ] = G[(∇0δx)T · FT + F · ∇0δx)] =
G[(∇0δx)T · F−1 · F · FT + F · FT · F−T (∇0δx)] ≈ G[(∇δx)T · B + B · (∇δx)]
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a fixed domain �. The basis of an arbitrary Lagrange-Euler (ALE) formulation is the use of
three separate coordinate systems: (i) the spatial or Eulerian reference system which is fixed
in space, (ii) the material or Lagrangian reference system which moves with the material and
(iii) the computational or arbitrary reference system which can move arbitrarily in space. A
material point in the Lagrangian system is identified with its position vector x in the Eulerian
system and with xg in the computational reference system (computational grid). The physical
quantities in the fluid-structure interaction problem are defined with respect to the Eulerian and
Lagrangian system. Consequently, a finite-element formulation of a fluid-structure interaction
problem can only be obtained if the Eulerian reference system is linked to the computational
reference system.

Coupling of the grid with the Eulerian system is achieved by considering the evolution
of a state variable φ(x, t) in material point P defined in the Lagrangian system. During an
infinitesimally small time step �t , the position of P with respect to the Eulerian system
changes according to

x(t) → x(t + �t) = x + dx for t → t + �t. (35)

The material derivative for �t → 0 can be written as
Dφ

Dt
= v · (∇φ) + ∂φ

∂t

∣∣∣
x
, (36)

where v is the velocity of the material point and ∇ the gradient operator with respect to the
Eulerian system. With respect to the grid reference system, the position of material point P

changes according to

xg(t) → xg(t + �t) = xg(t) + (dx − dxg) for t → t + �t, (37)

with dxg the change in position of xg. Using the previous equation with (36), we have for the
material derivative

Dφ

Dt
= (v − vg) · (∇φ) + ∂φ

∂t

∣∣∣
xg

, (38)

with vg the grid velocity and where ∇ remains with respect to the Eulerian system. Note that
∂φ/∂t is now defined with respect to the grid point xg . Application to the momentum equation
yields

ρ

(
∂v

∂t

∣∣∣
xg

+ (v − vg) · ∇v

)
= ∇ · σ + f in �f . (39)

Compared with (1) the grid velocity appears in the convective term and the time derivative is
now defined with respect to the grid points xg.

2.3.2. Weak formulation
If the grid velocity at t = tn is denoted by vn

g and is assumed to be constant during the time
interval from tn to tn+1, the linearization of the convective term yields(

v̂ + δv − vn
g

) · ∇ (v̂ + δv
) ≈ (v̂ − vn

g) · ∇v̂ + (v̂ − vn
g) · ∇δv + δv · ∇v̂, (40)

when higher-order terms are neglected. In the weak formulation given in (9), due to the moving
grid, the convective term will change according to[

v̂ · ∇δv
]

(9)
→ (v̂ − vn

g) · ∇δv. (41)
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Figure 3. Schematic representation of a ALE method.

The approximation of the local time derivative with respect to the grid points is defined exactly
by (10) as v and vn are evaluated in the same grid point and thereby in different locations in
the Eulerian reference system.

The motion of the grid defined by grid velocity xg depends on the deformation of the solid
mesh. A proper fluid-mesh quality is preserved by computing a fluid-grid displacement field
ug from a standard linear elastic deformation problem defined in �f :∫

�f

εwg
: (4C : εug

) d�g = 0 in �f , (42)

with the displacement at the boundary equal to the displacement of the solid at �f s and zero
elsewhere:

ug =



δx at �f s

0 at �f /�f s

. (43)

In these equations 4C is the fourth-order Hookean elasticity tensor for a linear elastic com-
pressible solid, εug

= 1
2 [∇ug + (∇ug)

T ] the elastic strain tensor and εwg
its variational

counterpart with respect to the weighting function wg ∈ W .
The solution procedure for the ALE method is shown in Figure 3. In the fluid problem

the velocity field in �f is computed using inflow velocity and the velocity of the moving
solid boundary as boundary conditions. From this velocity field the traction vector s on �fs

can be computed and used as boundary condition for the structure problem. In the structure
problem the deformation of the solid domain �s is computed providing boundary conditions
us and vs for the grid-deformation problem and the fluid problem, respectively. Finally, the
grid-deformation problem is solved to obtain vg needed for the fluid problem.
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Figure 4. Schematic representation of a solid domain �f d ⊂ �s with boundary �f d immersed in a fluid domain
�f with boundary �f .

2.4. FICTITIOUS-DOMAIN METHODS (FD)

2.4.1. Fluid-structure interface conditions
We consider a solid domain �f d ⊂ �s that is immersed in a fluid domain �f and separated
from the solid domain �s by the boundary �ss . The interface between the fluid domain �f and
the immersed solid domain �f d is denoted by �f d (fictitious-domain boundary). Continuity
of stress at the interface between the solid on the fluid is given by

σ sf · nf + σ f s · ns = 0 at �f d, (44)

with nf the outward-directed normal of the fluid domain and ns the outward-directed normal
of the solid domain, i.e., the opposite direction, at �fd . In terms of surface tractions exerted
by the solid on the fluid ssf and the fluid on the solid sf s , this can also be written as

ssf = −sf s at �f d. (45)

In the fictitious-domain method, however, the fluid does not have a explicitly defined boundary
at the interface with the immersed solid. In the original formulations of the fictitious-domain
method [13, 17, 18, 23] a variational approach is used and the coupling between fluid and
structure is established by means of Lagrange multipliers. In this work, the weak form of
the equations of motion is used to formulate the same fictitious-domain approach. In this
formulation, the traction exerted by the solid on the fluid is regarded as a locally acting
unknown body force f in the fluid domain. With the use of the Dirac delta function, this
force can be written as:

f = s̄sf δ(x − x�f d
) on �f . (46)

In this way the global body force f is localized at the interface by means of the delta function.
Here s̄sf defined on �f is chosen such that s̄sf = ssf on �f d and (45) is satisfied.

The kinematic coupling at the interface �f d is enforced using the boundary condition

vf = vs = ẋs at �f d, (47)

with vf and vs , respectively, the fluid and solid velocity and ẋs the time derivative of the
(solid) displacement field.
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2.4.2. Weak formulation
With the application of the fictitious-domain method, the weak formulations of the fluid and
the solid equations of motion are altered. The interaction between the fluid and solid domain
is included in the balance equations using the body force in the fluid domain and the surface
traction in the solid domain. Making use of the properties of the delta function, we can write
for the body force in (9):∫

�

w · f d� =
∫
�f

wf · ssf δ(x − x�fd
) d�f = −

∫
�f d

wf · sf d d�f d, (48)

with sf d the unknown traction at the fictitious-domain boundary and wf the weighting func-
tion for the fluid domain. The interface condition (45) is then satisfied weakly if the surface
traction in (30) is written as:∫

�̂

w · sd�̂ =
∫

�̂f d

ws · sf dd�̂f d , (49)

with ws the weighting functions for the solid domain.
The interaction surface traction sf d can be interpreted as a Lagrange multiplier to weakly

couple the velocities of the fluid and the solid through∫
�fd

wf d · (vf − vs) d�f d = 0, in �f d, (50)

with wf d the weighting functions defined on the fluid-solid-interaction interface.

2.5. ARBITRARY LAGRANGE-EULER FICTITIOUS-DOMAIN METHODS (ALE-FD)

For a fluid-structure interaction problem with ALE formulation and fictitious-domain incor-
porated, the linearized weak formulation for the fluid, solid and their coupling obtained with
the weighted-residuals method is summarized in (51) to (53). The equations for fluid motion
resulting from, respectively, the momentum and mass-balance equations are given by:∫

�f

wf · ρ

(
δv

�t

∣∣∣
xg

+ (v̂ − vn
g) · ∇δv + δv · ∇v̂

)
d�f +

+
∫
�f

(∇wf )T : δτ f d�f −
∫
�f

(∇ · wf )δpf d� +
∫

�f d

wf · δsf d d�f d

= −
∫

�f d

wf · ŝf d d�f d +
∫
�f

wf · sf d�F + r̂f ,

∫
�f

qf (∇ · δv) d�f = −
∫
�f

qf (∇ · v̂) d�f .

(51)
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The deformation of the structure is captured in the balance of momentum and the incompress-
ibility constraint:∫

�s

(∇ws)
T : (δτ s − (∇δx)T · σ̂ s

)
d�s −

∫
�s

δps∇ · ws d�s −
∫

�f d

ws · δsf d d�f d

=
∫
�s

ws · ss d�s +
∫

�f d

ws · ŝf d d�f d + r̂s ,

∫
�s

qs∇ · δx d�s = −
∫
�s

qs

( Ĵ − 1

Ĵ

)
d�s.

(52)

Finally, the coupling between fluid and solid as defined by the fictitious-domain method is
given by:∫

�fd

wf d · (δvf − δvs) d�f d = −
∫

�f d

wf d · (v̂f − v̂s) d�f d (53)

Here we used the following two definitions for the fluid and solid residual respectively:

r̂f =
∫
�f

wf · ρ
(

vn
f − v̂f

�t
− (v̂f − vg) · ∇v̂f

)
d�f +

+
∫
�f

[−(∇wf )T : τ̂ f + p̂f ∇ · wf

]
d�f

(54)

and

r̂s =
∫
�s

[−(∇ws)
T : τ̂ s + p̂s(∇ · ws)

]
d�s . (55)

In Figure 5 the ALE-FD method is shown schematically. For each iteration the fluid problem
and the structure problem are solved simultaneously together with the coupling constraint. The
solution of this coupled problem is checked for convergence with respect to the fluid velocity
vf , solid displacement us and surface traction sf s . At convergence the solid deformation us at
boundary �f s is used as a boundary condition for grid deformation. The resulting grid velocity
vg is then transferred to the next time step.

3. Finite-element formulation

3.1. FINITE-ELEMENT APPROXIMATION

In order to obtain a discrete set of finite-element equations, the complete domains �f and �s ,
as well as the fictitious-domain boundary �f d , are divided into non-overlapping sub-domains
�e

f , �e
s and �e

f d , respectively. Within each element the unknowns δvα , δpα and δsf d are
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Figure 5. Schematic representation of a ALE-FD method.

approximated by δve
α , δpe

α and δse
f d using Lagrange interpolation polynomials defined by the

predefined nodes per element, i.e.:

δve
α(x, t) =

nv∑
i=1

ϕi(x)δve
α,i(t) = ϕ

~
T δv~

e
α ∀x ∈ �e

α , α = f, s (56)

with nv being the number of velocity interpolation points per volume element �e
α; ϕ

~
=

[ϕ1, . . . , ϕnv
]T is the column of velocity shape functions ϕi , and δve

α~
= [δve

α,1, . . . , δv
e
α,n]T

the column that contains the unknowns δve
α,i per element.

pe
α(x, t) =

np∑
i=1

ψi(x)pe
α,i(t) = ψ

~
T p

~
e

α
∀x ∈ �e

α , α = f, s. (57)

Here np is the number of pressure interpolation points per volume element �e
α, ψ

~
=

[ψ1, . . . , ψnv
]T is the column of pressure shape functions ψi , and δpe

α~
= [δpe

α,1, . . . , δp
e
α,n]T

the column that contains the pressure unknowns δpe
α,i per element.

δse
f d(x, t) =

nf d∑
i=1

φi(x)δse
f d,i(t) = φ

~
T δs~

e
f d ∀x ∈ �e

f d, (58)
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where nfd is the number of surface-traction interpolation points per interface element �e
f d ,

φ
~

= [φ1, . . . , φnf d
]T is the column of surface-traction shape functions φi , and δs~

e
f d =

[δse
f d,1, . . . , δs

e
f d,n]T the column that contains the surface-traction unknowns δse

f d,i per in-
terface element.

The weighting functions we
α , qe

α and we
f d are discretized with the corresponding shape

functions (Galerkin method), i.e.:

we
α(x) =

nv∑
i=1

ϕi(x)we
α,i = ϕ

~
T w~

e
α ∀x ∈ �e

α , α = f, s, (59)

qe
α(x) =

np∑
i=1

ψi(x)qe
α,i = ψ

~
T q

~
e

α
∀x ∈ �e

α , α = f, s, (60)

we
f d(x, t) =

nf d∑
i=1

φi(x)we
f d,i = φ

~
T w~

e
f d ∀x ∈ �e

f d. (61)

In the next section the choice of the shape functions ϕi(x), ψi(x) and φi(x) will be
discussed. Substitution of the approximations (56), (57) and (58) and the weighting func-
tions (59), (60) and (61) in the weak forms (51), (52) and (53) and summation over the
finite-element domains yields a finite-element discrete set of equations with a structure given
by:





Sf LT

f

Lf 0




 0




LT

f c

0





 0




Ss LT

s

Ls 0





LT

sc

0




[
Lf c 0

] [
Lsc 0

] [
0
]




·




δv~f

δp
~f

δv~s

δp
~s

δs~f d




=




f
~

v

f

f
~

p

f

f
~

v

s

f
~

p

s

f
~

s

f d




(62)

with δv~α = [δv~α,1 δv~α,2 δv~α,3]T , Sf and Ss the fluid and solid system matrices, Lf and Ls the
divergence matrices for the fluid and solid and finally Lf c and Lsc the fluid-structure coupling
matrices.

3.2. FINITE-ELEMENT SPACES

In the previous section the structure of the element stiffness matrix and the element vector
have been derived based on the weak form of the equations of motion. To compute these
matrices, the specific shape functions and their derivatives for the displacement, the pressure
and the traction vector are needed. Also, numerical integration procedures to compute the
coefficients of the element vector and element matrix have to be defined. These quantities are
all dependent on the element shape and the order of interpolation.

A widely used classifying method for elements used in the mixed finite-element method is
to consider the type of pressure approximation being used. Two classes are distinguished, i.e.,
continuous pressure approximations and discontinuous pressure approximations. The former
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Figure 6. Three-dimensional elements: A) Q1 − P0 hexahedron, B) Q+
1 − P1 discontinuous pressure hexahed-

ron, C) Q+
1 − P1 continuous tetrahedron (MINI element), D) nonconforming Q1 − P0 element, E) Q+

2 − P1
discontinuous pressure hexahedron, F) Q2 − P1 Taylor-Hood tetrahedron (continuous pressure).

are also known as Taylor-Hood elements and the latter as Crouzeix-Raviart elements. Here
mainly Crouzeix-Raviart elements are treated because they allow discontinuity of the pressure
at each interface of the elements as can be desired in many cases in cardiovascular mechanics
in which fluid-structure interaction is involved [19].

A widely used element for three-dimensional analysis is the Q1 −P0-element. This discon-
tinuous hexahedral element uses trilinear interpolation functions for the displacement at the
vertices and a constant pressure in its centroid. A major drawback is that this element is not
a compatible element. The theoretical compatibility condition for mixed finite-element meth-
ods, the Babus̆ka-Brezzi condition, must be satisfied in order to ensure reliable computations.
The Q1 − P0 element is therefore unsafe owing to the possibility of locking. Compatible
elements of the discontinuous class, developed by Fortin [5] and tested by Robichaud and
Tanguy [6], are the Q+

1 − P0, the Q+
1 − P1 and the Q++

1 − P1 elements. It was shown that
these enriched elements maintain the advantage of low computational costs of the Q1 − P0

element. The Q+
1 − P1 is considered the best choice when an accurate pressure determination

is needed. A tetrahedral counterpart of this element would be the so-called MINI element
(See Figure 6 C). Together with the non-conforming Q1 − P0-element this is probably the
most simple stable three-dimensional element.

Apart from linear approximations for the displacement, quadratic approximations can also
be used. Not only is the accuracy improved, but also a better description of the geometry
can be realized. For instance, curved edges can be approximated much better using quadratic
elements. A well-known element of this type is the Q2 − P1 hexahedral element, which does
satisfy the compatibility condition, but is very expensive for practical computations because
of the 85 degrees of freedom. This element can also be used as a continuous (Taylor-Hood)



352 F.N. van de Vosse et al.

Figure 7. Three-dimensional Crouzeix-Raviart elements. The P+
2 P1 tetrahedral element (left) and the Q+

2 P1
hexahedral element (right).

pressure element. A continuous tetrahedral counterpart that is frequently used is the Q2 − P1-
element. This element has four nodes in the vertices and six at the midpoints of each element
edge. The pressure will be approximated linearly in the vertices, while the displacements are
interpolated in all ten nodes.

From the above a tetrahedral analogue seems to be more efficient in terms of computational
costs. However a discontinuous pressure approximation is desired. Therefore a Crouzeix-
Raviart tetrahedron can provide a solution. In two-dimensional space a commonly used dis-
continuous triangular element exists which can be extended to three dimensions. This 3-D
analogue yields the Q+

2 − P1 tetrahedron, which satisfies the Babus̆ka-Brezzi condition [24].
So far this element has not been used very often. This element has a much larger number of
degrees of freedom compared to the Q2 − P1 tetrahedron, i.e., 45 in displacement and 4 in
pressure. The additional degrees of freedom are a consequence of the 5 newly created nodes.
The four nodes in the centers of the faces as proposed by Brezzi and Fortin [24] enable to
control the normal flow on these faces and finally a node in the centroid of the tetrahedron is
added to stabilize the non-constant part of the pressure.

In this paper two element shapes will be considered, the P +
2 P1 tetrahedral element and

the Q+
2 P1 hexahedral element, both of the Crouzeix-Raviart type with an extended quadratic

approximation for the velocity and a discontinuous linear approximation for the pressure.
In Figure 7 the three-dimensional Crouzeix-Raviart elements are presented. Note that the

centroidal nodes have seven degrees of freedom, i.e., three displacements corresponding to
the Cartesian coordinates and four for the pressure and its derivatives. So the following finite-
element spaces will be used:

tetrahedral:

W h = {w ∈ [H 1
0 (�)]3;we = wh|�e ∈ [P +

2 (�e)]3},

Qh = {q ∈ L2
0(�); qe = qh|�e ∈ P1(�

e)};
(63)

hexahedral:

W h = {w ∈ [H 1
0 (�)]3;we = wh|�e ∈ [Q+

2 (�e)]3},

Qh = {q ∈ L2
0(�); qe = qh|�e ∈ P1(�

e)}.
(64)



Finite element based computational methods for cardiovascular fluid-structure interaction 353

Although in many cases a linear approximation can also be used, for the surface traction
unknown at the fictitious-domain interface a piecewise constant approximation turned out to
be a good choice, as a quadratic approximation in many cases results in an over-constrained
coupling, i.e.:

coupling:

W h
f d = {wf d ∈ [L2

0(�)]3;we
f d = wh

f d |�e ∈ [P0(�
e)]3}. (65)

In the next section a comparison of the performance of the two elements for fluid flow and
solid deformation will be made. Application to fluid-structure interaction problems will be
presented in the subsequent section.

3.3. SOLUTION METHOD

The linearized system of algebraic equations associated with the fluid, structure, grid deforma-
tion and fluid-structure interaction problems can not practically be solved with a direct solver
because of the large number of degrees of freedom involved. Due to the structure and ill-
conditioning of the matrix system, convergence of a straightforward applied iterative solver
would be very slow. In the software used in this study [25] a special renumbering of degrees
of freedom and an incomplete ILU preconditioned BiCGStab iterative solver is used [25].

4. Numerical tests

4.1. FLUID FLOW

In this chapter the P +
2 P1 tetrahedral element depicted in Figure 7 will be evaluated for fluid

flow and compared to the hexahedral Q+
2 P1 element given in the same figure. This 27-noded

brick is used as a reference for costs and convergence criteria. A boundary-value problem
of which the exact solution is known will be implemented and the simulation results will be
compared to their analytical solution. These simulations will be executed using several mesh
sizes and their results will be evaluated.

4.1.1. Beltrami test
When evaluating a Navier-Stokes solver, numerical results can be compared with the exact
solution, if available. Most of these exact solutions, however, are degenerate in the sense
that certain terms in the governing equations are equal to zero and as a consequence inter-
actions between the different terms are not tested. In order to test a Navier-Stokes solver
without the unsteady, convective, pressure or diffusion terms being zero, a special 3D solu-
tion of the Navier-Stokes equations was developed by Ethier and Steinman [26]. In this
so-called Beltrami flow, as presented in Equations (66) and (67), the unsteady terms balance
the diffusion terms, while the convective terms balance the pressure gradient.

vx = −a[eax sin(ay ± dz) + eaz cos(ax ± dy)]e−d2t ,

vy = −a[eay sin(az ± dx) + eax cos(ay ± dz)]e−d2t , (66)

vz = −a[eaz sin(ax ± dy) + eay cos(az ± dx)]e−d2t ,
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Figure 8. Cubes used for the Beltrami test with a hexahedral mesh (left) and a tetrahedral mesh (right), both with
a nodal spacing of 0·25.

p = −a2

2
[e2ax + 2 sin(ax ± dy) cos(az ± dx)ea(y+z) +

+ e2ay + 2 sin(ay ± dz) cos(ax ± dy)ea(z+x) + (67)

+ e2az + 2 sin(az ± dx) cos(ay ± dz)ea(x+y)]e−2d2t .

Although the flow defined by these equations will probably never be physically realized, it
has proven to be an excellent numerical benchmark [26].

A cube centered at (0,0,0) and extending one unit in all three directions is discretized uni-
formly with 2 to 10 elements per edge. Using hexahedra this yields 8 to 1000 elements while
with tetrahedra 48 to 6000 elements are used. The obvious ratio of 1:6 between hexahedra
and tetrahedra occurs because the mesh generator for tetrahedra uses a hexahedral mesh as
basis and then fills each hexahedron with 6 tetrahedra. Next, the Beltrami solutions (66) are
imposed on the cubic surfaces as Dirichlet boundary conditions. The pressure (67) is defined
in one central node per mesh. The constants a = 1

4π and d = 1
2π are chosen as proposed by

Ethier and Steinman [26]. Tests are executed from t0 = 0 stepping to tn = 0·1 in 100 equal
steps �t using the Euler implicit discretization scheme. Numerical results at tn are compared
to the analytical solution using a normalized L2 difference norm defined as

εv = max
k

‖ v~
h
k − v~k ‖L2

‖ v~k ‖L2

, (68)

where v~ is the column containing the velocity unknowns and ‖ · ‖L2 is the discrete L2 norm
defined by

‖ a~ ‖L2=
( N∑

i=1

a2
i

) 1
2
. (69)

The same difference norm can be used to determine the error of the pressure approximation,
yielding εp. The errors εv and εp of the various computations as well as their CPU time and the
number of degrees of freedom are stored. Figure 9 shows the errors εu and εp as functions of
the nodal spacing and the number of degrees of freedom for both tetrahedra () and hexahedra
(�).
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Figure 9. Errors εv and εp vs. nodal spacing (left) and vs. the number of degrees of freedom (right) obtained from
the Beltrami test at tn = 0·1 s.

Figure 10. Logarithmic plot of the CPU-time needed for the computation to reach convergence for all time steps
vs. the number of degrees of freedom (left) and error εv (right).

The slopes of the lines through the logarithmic data show a O(h3) performance of the
velocity for both hexahedra and tetrahedra, while the pressure shows a O(h2) decay for both
shapes. Figure 10 shows the relation between CPU-time and the accuracy of the computed
velocity fields. It shows the actual efficiency of the 15-node tetrahedron () in comparison to
the efficiency of the 27-node hexahedron (�).

The obvious drawback of using the tetrahedra can be illustrated by checking the extra
CPU-time needed in comparison to the hexahedra when demanding a certain accuracy of
computations. This drawback, however, is partially caused by the mesh generation. The per-
formance of finite-elements is highly dependent on the acuteness of their angles and since the
hexahedral meshes consisted of perfectly straight cubes, their results are somewhat idealized.
The tetrahedral meshes, on the contrary, are made using a cubic grid, which results in less
appropriate tetrahedra as one would have hoped. Some extra tests with less appropriate meshes
similar to the one depicted in Figure 4.4 show that an increase in shear angle α leads to an
immediate decay in accuracy when using hexahedra. Tetrahedral meshes on the other hand
seem to increase their performance when the angle α remains below 30◦. This shows that the
initial mesh (at α = 0◦) is not optimal for tetrahedra and results may improve when a better
mesh generator is used.
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Figure 11. Left: mesh of less appropriate hexahedra where α is the angle between the vertical edges of the straight
cubic and the edges of the oblique one. Right: Plot of this angle vs. error εv in the Beltrami test for tetrahedra and
hexahedra.

Figure 12. Basic geometry for the uni-axial tensile test.

The precise relation between angle α and computational accuracy is not further examined
here since only an indication of the idealized results of the hexahedra is needed. Since in the
vascular domain sharp edges may be inevitable, the accuracy of the hexahedra will certainly be
less favorable than the results of the Beltrami test speculate. However, when using an optimal
tetrahedral mesh, their accuracy may even increase and become a good alternative for the
hexahedron.

4.2. SOLID DEFORMATION

In this section the performances of the extended quadratic tetrahedron for solid mechanics are
discussed. Characteristic test problems are simulated in order to demonstrate the performance
of the element. First an uni-axial tensile test will be simulated. After that a cantilever beam
will be loaded at its free end to simulate pure bending. Finally a pipe segment will be inflated
by means of an internal pressure. All test results will be compared to the results obtained by
using the extensively tested 27-noded hexahedral element. Also, when an analytical solution
is present this solution will be used for comparison as well.
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Figure 13. Non-dimensional stress σ ∗ = σxx/G as a function of the stretch λ for the neo-Hookean model.

4.2.1. Uni-axial tension
A common way to model an uni-axial tensile or compression test is by using a unit-cube
as depicted in Figure 12. The planes x = 0, y = 0 and z = 0 will be restrained in their
normal directions. These Dirichlet boundary conditions ensure symmetry. Two types of ap-
plied boundary conditions on one of the remaining faces can be distinguished. Either essential
boundary conditions can be prescribed or natural boundary conditions may be imposed to
stretch the cube. The latter impose a stress on a surface, while the former prescribe dis-
placements of a specific surface. To test the incompressibility assumption, Dirichlet boundary
conditions are imposed. Prescribing the displacement in one direction should result in chan-
ging dimensions in the other two directions where no volume change may occur in the case
of incompressible materials. In this uni-axial elongation of an incompressible material the
Cauchy stress in the principle stretch direction can be expressed by σxx = G(λ2 − 1/λ).

First, a displacement normal to the yz-surface is applied to check to what extend the in-
compressibility constraint holds. Next the unit cube is loaded by a normal stress. The unit cube
will be meshed with both hexahedral and tetrahedral elements. Both solutions are compared
to the analytical solution.

Due to the nature of this experiment mesh refinement does not give any additional in-
formation other than more computational costs leading to the same results. Hence only two
different meshes of the unit cube are used. One hexahedral mesh containing one 27-noded
element and one tetrahedral mesh containing six 15-noded tetrahedral elements. The number
of nodes in the meshes is, respectively, 27 and 51. In the hexahedral mesh the element has
its ideal geometry. In order to test the influence of element distortion also a ‘patch test’ is
performed. Eight irregular hexahedral elements were created in the cube, but the results are
unaffected with respect to the regular hexahedra.

The tests with prescribed displacements show that no volume change occurs in either com-
pression or tension. Stretches within the range of 0·6 to 4·0 are realized without a changing
volume for hexahedral elements. For the tetrahedra a little less compression is possible and
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Figure 14. Cantilever beam loaded by a bending moment at its free end as seen from the positive z-direction. The
free end is represented in more detail in the lower right corner.

in tension stretches of λ = 2 are feasible without resulting in distorted elements. Analytically
there are almost no restrictions to the stretch λ. However, the tests with prescribed stresses
show slightly different results. Although the volumes remain constant the stretch maxima
are reduced. The hexahedral elements can sustain strains up to about 100% in tension, while
tetrahedral elements can sustain as much as 60%. In compression both elements can reach
a maximum of approximately 23%. In Figure 13 the results are displayed graphically. As
can be seen, within their own range both hexahedral and tetrahedral elements describe the
incompressible neo-Hookean model within the convergence criterion, which was set to 10−12.
The error in stretch between the analytical solution and the tetrahedral and analytical solution
is of order 10−7.

When the CPU-time of both simulations are compared, one can see that the CPU time per
node is less for the tetrahedral than for the hexahedral element. But as a consequence of the
larger number of nodes in the tetrahedral mesh, the overall computational costs are higher. A
quantitative comparison will be given in the next section.

4.2.2. Pure bending
Besides the uni-axial tensile test to evaluate the element’s performance, one can subject a test
sample to a bending moment. Schematically such a test is depicted in Figure 14. A cantilever
beam of length L is loaded at its free end by a distributed load σ (y) as a function of the height
of the beam at x = L. This will produce the desired bending moment M. If the length of the
beam is substantially longer than the height and the width of the test sample, i.e., at least a
factor 10, elastic-beam theory can be applied. The deflection v of the beam in any point on
the neutral surface (εx = 0) is the displacement of that point in the y-direction and can be
computed by v = σ1L

2/Eh in which σ1 is the maximal stress (see Figure 14). The Young’s
modulus E can be related to the shear modulus by E = 2G(1+ν). If incompressible materials
are investigated, ν is equal to 0·5.

The beam dimensions are set to create a geometry of a length that equals 10 and a width
and height of both 1. One end is completely restrained, while on the opposite end boundary
elements are created to apply the distributed stress in the normal direction. Again, both hexa-
hedral and tetrahedral elements are used to compare the results with the analytical solution.
Only small deflections can be compared to this analytical solution.

The number of elements is varied in order to vary the discretization distance (length of an
element). In Figure 15 the results of the errors as function of the discretization distance are
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Figure 15. Results of the bending test for tetrahedral and hexahedral elements: The error as function of the
discretization distance (left) and the error as function of the number of degrees of freedom (right).

Figure 16. Results of the bending test for tetrahedral and hexahedral elements: The CPU-time as function of the
number of degrees of freedom (left) and the error as function of the CPU-time (right).

depicted for both types of element shapes. The error is defined as:

ε = |vh − v|
|v| , (70)

where vh and v are, respectively, the numerical deflection computed and the analytical deflec-
tion and the analytical deflection v = σ1L

2/Eh. Within practical limitations convergence to
the analytical solution can be seen.

In Figure 16 the computational time as a function of the total number of degrees of freedom
is plotted. It is observed that the CPU-time consumption is less for tetrahedral elements than
for hexahedral elements with an equal number of degrees of freedom. Unfortunately this
gain is relatively small. The right figure of Figure 16 displays the error as a function of the
computational cost. To reach the same accuracy, tetrahedral elements consume a factor O(3)

more CPU-time than the hexahedra.
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Figure 17. Thick-walled cylinder under internal pressure (left) and an example of a meshed geometry with
tetrahedral elements (right).

5. Illustrative applications

5.1. DEFORMATION OF A THICK-WALLED TUBE

In this section the deformation of a thick-walled tube resulting from an internal pressure will
be considered. For both an isotropic and an anisotropic tube wall material, the approximate
solutions obtained with hexahedral and tetrahedral elements will be compared.

5.1.1. Isotropic material
A tube segment is inflated by means of an internal pressure. Because of the symmetrical nature
of this problem only a quarter of the tube segment is used for the numerical analysis (see
Figure 17). The segment will be loaded with an internal pressure p, which is varied in time. In
one time period the pressure is increased sinusoidally from zero to a maximum pressure and
back to zero again.

A comparison is made between hexahedral elements and tetrahedral elements. The radial
displacements in both cases are compared as well as the radial stresses. In Figure 18 the radii
are displayed as functions of the internal pressure. The differences between both element
shapes are negligible, i.e., the relative difference between the hexahedral and tetrahedral sim-
ulations with respect to the solution of hexahedra is of order O(10−4). Increasing the number
of elements yields a decrease in deviation with respect to the hexahedral solution.

In Figure 19 the non-dimensional radial stress is plotted for both element shapes. Both sim-
ulations result in similar stress distributions. Although the analytical solution of this problem
is beyond the scope of this article, it is clear that at the inner and outer radius the boundary
conditions are satisfied, i.e., the stress at the inner radius is equal to −p, while at the outer
surface the stress equals zero. Finally the simulations demonstrate a decrease in difference
between the solutions of the tetrahedral and hexahedral elements when mesh refinement is
applied.

5.1.2. Composite material
In the previously described tests isotropic materials are used. The incorporation of fibers is
best demonstrated using a multi-layer constitutive model of arterial walls as proposed in
Holzapfel [4]. The material properties of the layers (for both the matrix material and the fibers)
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Figure 18. The difference between hexahedral and tetrahedral elements in inner (left) and outer radius (right) of a
cylinder as a function of the internal pressure.

Figure 19. Non-dimensional radial stress σ ∗ = σr/p over the wall thickness (Data obtained from simulations on
t = 0·5 [s] thus with internal pressure p = 0·2 [N/m2]).

are obtained from histological information of the rabbit carotid artery. For the constitutive
equations for the media and adventitia this yields, respectively:

σ j = −pI + τm,j +
2∑

i=1

τf,ij eij eij (71)

with

τm,j = Gm,j (B − I) and τf,ij = 2k1jλ
2
ij (λ

2
ij − 1)ek2j (λ2

ij −1)2
. (72)
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Table 1. Material coefficients for rabbit carotid
arteries.

Gm k1 k2

Media 3·0 kPa 2·3632 kPa 0·8393

Adventitia 0·3 kPa 0·5620 kPa 0·7112

Figure 20. Radial stress in the artery as a function of the radius (left) and the axial stress as function of the time
(right).

The index j distinguishes between the media and adventitia, whereas Gm,j , k1j and k2j are
the material parameters as presented in Table 1. Finally eij denote the unit vectors of the two
fiber directions in both layers.

In this test the artery is modeled as a straight circular vessel which contains residual stresses
in the axial direction as well as in the circumferential direction before the vessel is pressurized.
The internal pressure is increased quadratically in time to 20 kPa after 1 second.

The results of the FEM simulations with hexahedra and tetrahedra are pictured in Fig-
ure 20. As can be seen different finite-element shapes yield the same stress distributions. To
display the differences in magnitude the radial stresses for both shapes are plotted vs. the radial
position in the arterial wall (see Figure 20). The two different layers can be distinguished
clearly.

The axial strain is zero since axial displacement is suppressed. As a result of this the stress
in the axial direction increases with increasing radial displacement. In the right figure of
Figure 20 the axial stresses are plotted as functions of time. Note that the ‘negative’ time
is used to introduce the pre-stressed initial configuration. Once again the tetrahedral solution
is compared to the hexahedral solution. The maximum difference of 2% between hexahedra
and tetrahedra is found at the maximum pressure (t = 1 [s]).

5.2. FLOW IN A COMPLIANT CURVED TUBE (ALE)

As an illustration of the ALE method for problems where fluid flow and solid deformation are
weakly coupled, in this section the flow of a non-Newtonian shear thinning fluid in a curved
tube will be considered. The problem will be scaled to the situation in coronary arteries where
the order of magnitude of the amplitude of the pressure waves amounts O(10 kPa) whereas
the flow-induced pressure differences ρV 2 are much smaller O(0·1 kPa).
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Figure 21. Axial and secondary velocity field of a Carreau-Yasuda fluid in four cross-sections of a rigid curved
tube representing a right coronary artery at peak systolic (top) and end diastolic (bottom) phase of the cardiac
cycle.

We consider a curved tube with radius a = 1·5 × 10−3 [m] and wall thickness h =
1·5 × 10−4 [m] and a radius of curvature of R = 1·5 × 10−2 [m]. Moreover, a neo-Hookean
wall material with a shear modulus G = 0·2 [MPa] is assumed. The importance of the non-
Newtonian properties of blood will not be shown in this study; for this the reader is referred
to Gijsen et al. [2, 3]. The fluid inside the tube is assumed to be a generalized Newtonian
fluid that can be described by the Carreau-Yasuda model (8). The parameters of the model are
chosen such that the viscous behavior mimics that of blood [2, 3], i.e., ρ = 1080 [kg/m3],
η0 = 5·19 × 10−2 [Pa s], η∞ = 4·76 × 10−3 [Pa s], a = 4·09 × 10−1 [–], n = 1·91 × 10−1 [–]
and λ = 4·38×10−1 [s]. Pressure and flow curves are adopted from [27, Chapter 10]. Based on
the mean flow of 100 ml/min, a Reynolds number can be defined with respect to the viscosity
at high shear η∞ and is in the order of 150. A cardiac time period of T = 0·75 [s] is taken,
yielding a Womersley-number equal to 2·4.

The approximate solutions of two periods of 128 time steps per period are computed. The
results shown are for the second period. For each time step the wall motion is computed using
the pressure curve as depicted in the Figures 21 and 22. The movement of one node at the
outer wall of the in-stream has been suppressed in all directions. Both the wall motion and a
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Figure 22. Axial and secondary velocity field of a Carreau-Yasuda fluid in four cross-sections of a compliant
curved tube representing a right coronary artery at peak systolic (top) and end diastolic (bottom) phase of the
cardiac cycle. The dotted lines represent the geometry at diastolic pressure.

parabolic in-stream profile based on the flow curve given in the figure are used as boundary
conditions for the fluid problem. At the outflow a traction-free condition is used.

The results show that the velocity profiles and thereby the wall shear stress in the rigid
curved tube differs considerably from the one in the compliant tube, although the main flow
characteristics are equal.

5.3. HYDRODYNAMIC INTERACTION OF TWO VALVES (FD)

The fictitious-domain method will be illustrated by means of a simulation of pulsating flow in
a 2D cavity with two valves. This configuration can be seen as a simplified model of the flow in
the left ventricle. The width of the inflow (right top) and outflow (left top) channel is assumed
to be H (see Figure 23). The radius of curvature of the bifurcation point is 0·2H so the total
width of the cavity is 2·4H . At inflow boundary at the bottom of the cavity (not shown in
Figure 23) a sinusoidal plug flow in time U = U0 cos ωt is prescribed. The constant viscosity
and density are taken such that during peak flow the Reynolds number based on the width
of the in- and outflow channels amounts to 2400. The Strouhal number for this configuration
is 0·042. The constant pressure at the outflow boundary (left) is five times higher than the
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pressure at the inflow (right). So the system works as a pump pumping fluid from a low to a
high pressure.

With respect to the fluid flow, the two valves are assumed to be thin and only at the down-
stream side of the valve a fictitious-domain coupling is made. In this way an over-constrained
coupling is circumvented. The rotation points of the valves are clear from Figure 23.

Straightforward application of the fictitious domain procedure as prescribed in Section 2.5
for this configuration will not result in a realistic and stable solution. There are two reasons for
this. First, when the valves are closed and have to carry a significant pressure, leakage through
the valves will occur because of the linear pressure approximation in the fluid elements that
are cut by the valve. Secondly, the vorticity generated by the moving valves in the in- and
outflow channels will interact with the boundary condition and yield an unstable flow. The
latter problem is specific for the configuration chosen. It can either be solved by moving the
outflow boundaries far away from the valves or by introducing an artificial viscosity in the
channel when the valve is closed. The second solution is selected in this study. The first prob-
lem, however, is generic and known from earlier studies [19]. For rigid valves, the following
solution is proposed. The initial fluid mesh is such that boundaries �fd of the valves in closed
position coincide with boundaries of elements �e

f in the fluid domain �f . In this way large
pressure differences over the valves can be sustained without leakage due to the fact that in
the Crouzeix-Raviart elements the pressure is discontinuous over the element boundaries. As
the valves in closed position may deform slightly due to the pressure forces, the valve is kept
in its initial closed position as long as the pressure force is not in the direction that would open
the valve.

The results of the simulation are summarized in Figure 23 where the velocity fields at six
successive instants of time during one (the second) flow cycle are given. The low-pressure
valve (right) closes in a time period after maximum flow acceleration during which a signific-
ant retrograde flow (regurgitation) is present. Once the low-pressure valve is closed, forward
flow in the high-pressure valve is found until a moment of time shortly after maximum de-
celeration. The regurgitation through the high-pressure valve is much less than through the
low-pressure valve. A thorough analysis of the valve dynamics is beyond the scope of this
paper and needs a series of simulations in which the Reynolds and Strouhal number are varied.
The results shown do indicate, however, that such an analysis can be very well performed using
the fictitious-domain method as presented in this paper.

6. Conclusions and discussion

In this paper a finite-element-based method for cardiovascular fluid-structure interaction prob-
lems has been presented. The method proposed in this paper is based on an arbitrary Lagrange-
Euler method combined with a fictitious-domain approach. This combined (ALE-FD) method
is based on standard finite-element approximations for fluid flow and solid deformation and by
virtue of this can be used for most constitutive models for the fluid and the solid. In this study,
an inelastic generalized Newtonian fluid [2, 3] and a fiber-reinforced solid [22] is chosen and
thereby typical non-Newtonian behavior of blood and nonlinear behavior of vascular tissue
can be described.

The linearized finite-element equations have been derived and described, including the
linearization process to deal with constitutive and geometrical nonlinearities and the incorpor-
ation of boundary conditions and coupling between fluid and solid domains. The linearized
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Figure 23. Valve dynamics during six successive instants of time in one cycle of an imposed flow pulse.

systems for fluid flow, solid deformation and fluid-structure interaction are solved using a
special renumbering of degrees of freedom and an incomplete ILU preconditioned BiCGStab
iterative solver [25]. Even though convergence of the system is achieved in the problems
considered in this paper, it needs further investigation to decide whether or not this solution
method is optimal.

Special attention has been paid to the choice of elements that are suitable for the ALE-FD
method. Linear elements are known to be quite inaccurate both for fluid flow and solid deform-
ation and are not considered in this study. However, the efficiency that can be achieved with
these elements would justify further investigation [28]. Due to the requirement of fictitious-
domain methods that are used for thin solid structures that can bear significant pressure
forces, fluid and structure elements with a continuous pressure approximation are ignored
in this study. Consequently, only the quadratic tetrahedral (P +

2 P1) and hexahedral (Q+
2 P1)

Crouzeix-Raviart elements have been considered.
For approximate solutions of the Navier-Stokes equations we found a similar convergence

for tetrahedral and hexahedral elements using an exact Beltrami flow solution. Hexahedral
elements seem to be advantages with respect to accuracy but an experiment with a skewed
mesh showed that, once the mesh is distorted, tetrahedral elements may give comparable or
even better results. A more detailed study with different kinds of meshes for complex domains
is needed in order to be more conclusive in this respect.
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The performance of the tetrahedral elements for solid deformation has been investigated
by means of three characteristic tests, uni-axial tension, pure bending and deformation of
a tube. All these tests show no significant difference between the solutions obtained with
hexahedral and tetrahedral elements, although the hexahedral elements are definitely more
accurate for the cases studied in this paper. When looking at the computational costs, the
tetrahedral elements are more efficient in terms of CPU-time per degree of freedom (DOF).
But this advantage is not completely utilized, since more elements (DOFs) are needed to end
up at the same accuracy as for hexahedral elements. Thus, even though the tetrahedra is faster
per node, the overall cost to reach an arbitrary accuracy is still higher for tetrahedra. Obviously,
since numerous elements for tetrahedral meshes can not be avoided, the efficiency can only
be improved by reducing the computational costs per element.

Overall within the meshing flexibility of the mesh generators used, the performances of
the Crouzeix-Raviart tetrahedron can not compete with the tri-quadratic hexahedron when
it involves accuracy aspects vs. computational time. In the test problems all geometries are
simple and, as a result of that, the meshes show ‘ideal’ hexahedral elements. A fairer compar-
ison could probably be made with more irregular geometries. In this case the tetrahedron is
expected to be favorable as regards mesh generation and probably with respect to efficiency
as well. A final remark can be made about the costs of the tetrahedral element. A reduction
in CPU-time per element would allow the use of more elements. Then, the tetrahedron can
be more competitive than the hexahedron in terms of cost efficiency. In two-dimensional
problems this is achieved by elimination of degrees of freedom in the centroidal node of a
Crouzeix-Raviart triangle. A three-dimensional analogue of this modified Crouzeix-Raviart
triangle would probably be worthwhile investigating.

The incorporation of fibers in isotropic matrix material is demonstrated to be straight-
forward. Instead of just defining a shear and a bulk modulus (in the case of compressible
solids), one also needs to specify the fiber-material properties. The executed simulations
were not a profound analysis but more a leg-up regarding the applicability in biomechanical
surroundings.

The results obtained for the curved-tube flow show that the velocity profiles and thereby
the wall shear stress in the rigid curved tube considerably differ from the one in the compliant
tube. The ALE method can certainly be used to investigate the importance of this difference
with respect, to for instance, wall shear stress, an important parameter with respect to the
development of atherosclerosis or aneurysms and restenosis after balloon-angioplasty with or
without stent procedure.

Finally, the potential of a combined arbitrary Lagrange-Euler fictitious-domain method
(ALE-FD) has been demonstrated for a simplified model of the left ventricle with rigid (mech-
anical) valves. A special procedure has been proposed to achieve that the fictitious-domain
approach is able to describe thin structures that may sustain relatively large pressure forces.
In that case the fictitious-domain boundary must coincide with boundaries of the fluid-domain
elements. Extension of this procedure for non-rigid solid structures by means of local remesh-
ing of the fluid domain is currently under investigation.

References

1. C.A. Taylor, Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided
Surgery 4 (1999) 231–247.



368 F.N. van de Vosse et al.

2. F.J.H. Gijsen, E. Allanic, F.N. van de Vosse and J. D. Janssen, The influence of the non-Newtonian properties
of blood on the flow in large arteries: unsteady flow in a 90◦ curved tube, J. Biomech. 32 (1999) 705–713.

3. F.J.H. Gijsen, F.N. van de Vosse and J.D. Janssen, The influence of the non-Newtonian properties of blood
on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32 (1999) 601–608.

4. G.A. Holzapfel, A new constitutive framework for arterial wall mechanics and a comparative study of
material models. Elasticity 61 (2000) 1–48.

5. M. Fortin, Old and new finite-elements for incompressible flow. Int. J. Num. Meth. Fluids 1 (1981) 347–354.
6. M.P. Robichaud and P.A. Tanguy, Comparison of 3-D finite-elements for fluid flow. Commun. Appl. Num.

Meth. 22 (1987) 1251–1267.
7. J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Langragian-Eulerian finite-element method for transient

dynamic fluid structure interactions. Comp. Meth. Appl. Mech. Engng. 33 (1982) 689–723.
8. P.J.G. Schreurs, Numerical Simulation of Forming Processes: the use of the Arbitrary-Eulerian-Langrangian

(AEL) Formulation and the Finite Element Method. PhD thesis, University of Technology, Eindhoven (1983)
136 pp.

9. A.A. Johnson and T.E. Tezduyar, Mesh update strategies in parallel finite element computations of flow
problems with moving boundaries and interfaces. Comp. Meth. Appl. Mech. Engng. 119 (1994) 73–94.

10. P.J.R. Reuderink, Analysis of the Flow in a 3D Distendible Model of the Carotid Artery Bifurcation. PhD
thesis, University of Technology, Eindhoven (1991) 138 pp.

11. K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant
carotid artery bifurcation model. J. Biomech. 28 (1995) 845–856.

12. M.C.M. Rutten, Fluid Solid Interaction in Large Arteries. PhD thesis, University of Technology, Eindhoven
(1998) 124 pp.

13. F. Bertrand, P.A. Tanguy and F. Thibault, A three-dimensional ficticious domain method for incompressible
flow problems. Int. J. Num. Meth. Fluids 25 (1997) 719–736.

14. R. Glowinski, T.W. Pan and J. Periaux, Distributed Lagrange multiplier methods for incompressible viscous
flow around moving rigid bodies. Comp. Meth. Appl. Mech. Engng. 151 (1998) 181–194.

15. N.A. Patankar, P. singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulation of the distributed
Lagrange multiplier/ficticious domain method for particulate flows. Int. J. Multiphase Flows 26 (2000) 1509–
1524.

16. C.S. Peskin and D.M. McQueen, A general method for the computer simulation of biological systems
interacting with fluids. Symposia Soc. Experimantal Biology 49 (1995) 265–276.

17. F.P.T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Num. Meth.
Fluids 35 (2001) 743–761.

18. J. de Hart, G.W.M. Peters, P.J.G. Schreurs and F.P.T. Baaijens, A two-dimensional fluid-structure interaction
model of the aortic valve. J. Biomech. 33 (2000) 1079–1088.

19. J. de Hart, Fluid-Structure Interaction in the Aortic Heart Valve: A Three-Dimensional Computational
Analysis. PhD thesis, University of Technology, Eindhoven (2002) 127 pp.

20. R. Temam, Navier-Stokes Equations. Amsterdam: North-Holland (1977) 526 pp.
21. J.D. Humphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Engng. 23 (1995)

1–162.
22. C.H.G.A. Oijen, Mechanics and Design of Fibre Reinforced Vascular Prosthesis. PhD thesis, University of

Technology, Eindhoven (2003) 89 pp.
23. R. Glowinski, T.W. Pan and J. Periaux, A Lagrange multiplier/fictitious domain method for the numerical

simulation of incompressible viscous flow around moving rigid bidies: (i) case where the rigid body motions
are known a priori. C.R. Acad. Sci. Paris 25 (1997) 361–369.

24. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag (1981)
350 pp.

25. A. Segal, SEPRAN Manual. Leidschendam (Netherlands): Ingenieursbureau SEPRA (2000).
26. C.R. Ethier and D.A. Steinman, Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Num. Meth.

Fluids 19 (1994) 369–375.
27. R.M. Berne and M.N. Levy, Cardiovascular Physiology. St. Louis: Mosby (1967) 312 pp.
28. F. Bertrand, M.R. Gadbois and P.A. Tanguy, Tetrahedral elements for fluid flow. Int. J. Num. Meth. Engng.

33 (1992) 1251–1267.


